13,824 research outputs found

    Applications of ISES for coastal zone studies

    Get PDF
    In contrast to the discipline- and process-oriented topics addressed, coastal zone studies are defined geographically by the special circumstances inherent in the interface between land and water. The characteristics of coastal zones which make them worthy of separate consideration are: (1) the dynamic nature of natural and anthropogenic processes taking place; (2) the relatively restricted spatial domain of the narrow land/water interface; and (3) the large proportion of the Earth's population living within coastal zones, and the resulting extreme pressure on natural and human resources. These characteristics place special constraints and priorities on remote sensing applications, even though the applications themselves bear close relation to those addressed by other elements of this report (e.g., oceans, ice, vegetation/land use). The discussion which follows first describes the suite of remote sensing activities relevant to coastal zone studies. Potential Information Sciences Experiment System (ISES) experiments will then be addressed within two general categories: applications of real-time data transmission and applications of onboard data acquisition and processing

    Bell's theorem without inequalities and without alignments

    Full text link
    A proof of Bell's theorem without inequalities is presented which exhibits three remarkable properties: (a) reduced local states are immune to collective decoherence; (b) distant local setups do not need to be aligned, since the required perfect correlations are achieved for any local rotation of the local setups; (c) local measurements require only individual measurements on the qubits. Indeed, it is shown that this proof is essentially the only one which fulfils (a), (b), and (c).Comment: REVTeX4, 4 page

    Error Analysis For Encoding A Qubit In An Oscillator

    Full text link
    In the paper titled "Encoding A Qubit In An Oscillator" Gottesman, Kitaev, and Preskill [quant-ph/0008040] described a method to encode a qubit in the continuous Hilbert space of an oscillator's position and momentum variables. This encoding provides a natural error correction scheme that can correct errors due to small shifts of the position or momentum wave functions (i.e., use of the displacement operator). We present bounds on the size of correctable shift errors when both qubit and ancilla states may contain errors. We then use these bounds to constrain the quality of input qubit and ancilla states.Comment: 5 pages, 8 figures, submitted to Physical Review

    Randomized benchmarking in measurement-based quantum computing

    Get PDF
    Randomized benchmarking is routinely used as an efficient method for characterizing the performance of sets of elementary logic gates in small quantum devices. In the measurement-based model of quantum computation, logic gates are implemented via single-site measurements on a fixed universal resource state. Here we adapt the randomized benchmarking protocol for a single qubit to a linear cluster state computation, which provides partial, yet efficient characterization of the noise associated with the target gate set. Applying randomized benchmarking to measurement-based quantum computation exhibits an interesting interplay between the inherent randomness associated with logic gates in the measurement-based model and the random gate sequences used in benchmarking. We consider two different approaches: the first makes use of the standard single-qubit Clifford group, while the second uses recently introduced (non-Clifford) measurement-based 2-designs, which harness inherent randomness to implement gate sequences.Comment: 10 pages, 4 figures, comments welcome; v2 published versio

    Identification of marsh vegetation and coastal land use in ERTS-1 imagery

    Get PDF
    Coastal vegetation species appearing in the ERTS-1 images taken of Delaware Bay on August 16, and October 10, 1972 have been correlated with ground truth vegetation maps and imagery obtained from high altitude RB-57 and U-2 overflights. The vegetation maps of the entire Delaware Coast were prepared during the summer of 1972 and checked out with ground truth data collected on foot, in small boats, and from low-altitude aircraft. Multispectral analysis of high altitude RB-57 and U-2 photographs indicated that five vegetation communities could be clearly discriminated from 60,000 feet altitude including: (1) salt marsh cord grass, (2) salt marsh hay and spike grass, (3) reed grass, (4) high tide bush and sea myrtle, and (5) a group of fresh water species found in impoundments built to attract water fowl. All of these species are shown in fifteen overlay maps, covering all of Delaware's wetlands prepared to match the USGS topographic map size of 1:24,000

    Quantum communication using a bounded-size quantum reference frame

    Full text link
    Typical quantum communication schemes are such that to achieve perfect decoding the receiver must share a reference frame with the sender. Indeed, if the receiver only possesses a bounded-size quantum token of the sender's reference frame, then the decoding is imperfect, and we can describe this effect as a noisy quantum channel. We seek here to characterize the performance of such schemes, or equivalently, to determine the effective decoherence induced by having a bounded-size reference frame. We assume that the token is prepared in a special state that has particularly nice group-theoretic properties and that is near-optimal for transmitting information about the sender's frame. We present a decoding operation, which can be proven to be near-optimal in this case, and we demonstrate that there are two distinct ways of implementing it (corresponding to two distinct Kraus decompositions). In one, the receiver measures the orientation of the reference frame token and reorients the system appropriately. In the other, the receiver extracts the encoded information from the virtual subsystems that describe the relational degrees of freedom of the system and token. Finally, we provide explicit characterizations of these decoding schemes when the system is a single qubit and for three standard kinds of reference frame: a phase reference, a Cartesian frame (representing an orthogonal triad of spatial directions), and a reference direction (representing a single spatial direction).Comment: 17 pages, 1 figure, comments welcome; v2 published versio

    Dynamics of a Quantum Reference Frame

    Get PDF
    We analyze a quantum mechanical gyroscope which is modeled as a large spin and used as a reference against which to measure the angular momenta of spin-1/2 particles. These measurements induce a back-action on the reference which is the central focus of our study. We begin by deriving explicit expressions for the quantum channel representing the back-action. Then, we analyze the dynamics incurred by the reference when it is used to sequentially measure particles drawn from a fixed ensemble. We prove that the reference thermalizes with the measured particles and find that generically, the thermal state is reached in time which scales linearly with the size of the reference. This contrasts a recent conclusion of Bartlett et al. that this takes a quadratic amount of time when the particles are completely unpolarized. We now understand their result in terms of a simple physical principle based on symmetries and conservation laws. Finally, we initiate the study of the non-equilibrium dynamics of the reference. Here we find that a reference in a coherent state will essentially remain in one when measuring polarized particles, while rotating itself to ultimately align with the polarization of the particles
    • …
    corecore